One - Dimensional Dynamical Systems and Benford ’ S Law
نویسندگان
چکیده
Near a stable fixed point at 0 or ∞, many real-valued dynamical systems follow Benford's law: under iteration of a map T the proportion of values in {x, T (x), T 2 (x),. .. , T n (x)} with mantissa (base b) less than t tends to log b t for all t in [1, b) as n → ∞, for all integer bases b > 1. In particular , the orbits under most power, exponential, and rational functions (or any successive combination thereof), follow Benford's law for almost all sufficiently large initial values. For linearly-dominated systems, convergence to Benford's distribution occurs for every x, but for essentially non-linear systems, exceptional sets may exist. Extensions to non-autonomous dynamical systems are given, and the results are applied to show that many differential equations such as ˙ x = F (x), where F is C 2 with F (0) = 0 > F (0), also follow Benford's law. Besides generalizing many well-known results for sequences such as (n!) or the Fibonacci numbers, these findings supplement recent observations in physical experiments and numerical simulations of dynamical systems.
منابع مشابه
Multi-dimensional Dynamical Systems and Benford’s Law
One-dimensional projections of (at least) almost all orbits of many multidimensional dynamical systems are shown to follow Benford’s law, i.e. their (base b) mantissa distribution is asymptotically logarithmic, typically for all bases b. As a generalization and unification of known results it is proved that under a (generic) non-resonance condition on A ∈ Cd×d, for every z ∈ Cd real and imagina...
متن کاملGeneralizing Benfords Law Using Power Laws: Application to Integer Sequences
A simple method to derive parametric analytical extensions of Benfords law for first digits of numerical data is proposed. Two generalized Benford distributions are considered, namely the two-sided power Benford (TSPB) distribution, which has been introduced in Hürlimann(2003), and the new Pareto Benford (PB) distribution. Based on the minimum chisquare estimators, the fitting capabilities of ...
متن کاملSensitive Dependence on Parameters of Continuous-time Nonlinear Dynamical Systems
The sensitive dependence of periodicity and chaos on parameters is investigated for three-dimensional nonlinear dynamical systems. Previous works have found that noninvertible low-dimensional maps present power-law exponents relating the uncertainty between periodicity and chaos to the precision on the system parameters. Furthermore, the values obtained for these exponents have been conjectured...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملThe Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion
In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005